The main goal of the first semester (Basic Design Studio I) is to introduce students to the culture and practices of design and to help them explore and experience the fundamental approaches, skills and knowledge of the field. With each assignment, students explore why and according to which rules, main ideas, principles, parameters and constraints various design elements could/would and/or should (or should not!) come together to make a composition. While computational design is a major part of the program, the analogue experience is given priority; the objective is not to teach digital design programs per se, but to learn how to mobilize them: composing, decomposing, recomposing, grouping and regrouping models, forms and ideas. The curriculum is further supported by a “workshop week” where students are introduced to various other mediums and design disciplines typically seen outside of architecture (i.e., visual communications design, fashion and textile design, industrial design).

2D COMPOSITION ("MEETING MATISSE"): In this exercise students work with two paintings by Henri Matisse, “The Piano Lesson” (1916) or “Goldfish and Palette (1914),” as a composition, and identify the main ordering principles. Here the aim is twofold: to explore how to work within a given visual field and analyze the (hierarchical) relationship between different elements that are grouped together. After identifying and grouping the elements, the next step is to locate the main guiding lines which Matisse may have used in order to organize the visual field so that individual units come together not randomly, but following a system of references. Finally, students are asked to select any number of elements from “The Piano Lesson” or “Goldfish and Palette” and with them, create a composition of their own.
2D COMPOSITION ("SHOPPING BAG DESIGN"): In this exercise students produce their own compositional elements in order to design the front cover of a shopping bag by using free-hand abstract drawings of an object gathered from nature. Here the aim is to grasp the difference between pictorial representation (i.e., copying of actual objects) and abstract representation by achieving different degrees of abstraction. The next step is to create variations of the initial object (i.e., reproduce it in 1/2 scale, and reproduce half and quarter of the shape) and to improvise with a grid system as a background. The final step of the exercise requires the application of color so as to better group the elements and highlight the sense of balance, harmony or contrast between them.
2D COMPOSITION (“SHOPPING BAG DESIGN”): In this exercise students produce their own compositional elements in order to design the front cover of a shopping bag by using free-hand abstract drawings of an object gathered from nature. Here the aim is to grasp the difference between pictorial representation (i.e., copying of actual objects) and abstract representation by achieving different degrees of abstraction. The next step is to create variations of the initial object (i.e., reproduce it in 1/2 scale, and reproduce half and quarter of the shape) and to improvise with a grid system as a background. The final step of the exercise requires the application of color so as to better group the elements and highlight the sense of balance, harmony or contrast between them.
UNIT/PATTERN/RHYTHM ("MUSIC IN COMPOSITION"): Here the aim is to create a pattern by using identical units. These units consist of three geometric shapes: 1 triangle, 1 quadrilateral and 1 curvilinear element. Students are asked to locate these three shapes within a 5×5 cm frame; the shapes should also be proportionately used and can partially overlap. The main idea is to find a balance between a pattern design, where the identity of each element can be recognized, while also bringing a series of identical, recurring elements together to create a unified expression. The final step is to turn the pattern into a ‘rhythmic composition’ by making subtle changes: creating variations of the unit they designed, using intervals between elements, and producing a sense of movement.
UNIT/PATTERN/RHYTHM (“MUSIC IN COMPOSITION”): Here the aim is to create a pattern by using identical units. These units consist of three geometric shapes: 1 triangle, 1 quadrilateral and 1 curvilinear element. Students are asked to locate these three shapes within a 5×5 cm frame; the shapes should also be proportionately used and can partially overlap. The main idea is to find a balance between a pattern design, where the identity of each element can be recognized, while also bringing a series of identical, recurring elements together to create a unified expression. The final step is to turn the pattern into a ‘rhythmic composition’ by making subtle changes: creating variations of the unit they designed, using intervals between elements, and producing a sense of movement.
FINAL EXERCISE: RULE-BASED DESIGN ("SHAPE GRAMMAR"): The aim of this final assignment is to introduce the students to a computational approach for design generation. First, students determine an initial geometric shape and define two sets of rules. The rules must include both addition and subtraction of geometric shapes and defer to given design parameters and constraints (such as the size and location of the initial shape). The first part of the exercise is to design a 2D composition, where each new design is generated from the previous one by the repetitious implementation of the rules. In time, color and texture are added as new design parameters to emphasize the main ideas (i.e. rhythm, contrast, harmony). In the second part of the exercise, the main goal is to design a 3D self-standing composition: students work with an initial form and then apply three rules to a set of solid, planar and linear elements. In this final exercise, we begin to discuss space, but not as architectural space *per se*: the emphasis is on a balanced solid-void relationship, structural stability and different degrees of enclosures.
FINAL EXERCISE: RULE-BASED DESIGN (“SHAPE GRAMMAR”): The aim of this final assignment is to introduce the students to a computational approach for design generation. First, students determine an initial geometric shape and define two sets of rules. The rules must include both addition and subtraction of geometric shapes and defer to given design parameters and constraints (such as the size and location of the initial shape). The first part of the exercise is to design a 2D composition, where each new design is generated from the previous one by the repetitious implementation of the rules. In time, color and texture are added as new design parameters to emphasize the main ideas (i.e., rhythm, contrast, harmony). In the second part of the exercise, the main goal is to design a 3D self-standing composition: students work with an initial form and then apply three rules to a set of solid, planar and linear elements. In this final exercise, we begin to discuss space, but not as architectural space *per se*: the emphasis is on a balanced solid-void relationship, structural stability and different degrees of enclosures.
FINAL EXERCISE: RULE-BASED DESIGN (“SHAPE GRAMMAR”): The aim of this final assignment is to introduce the students to a computational approach for design generation. First, students determine an initial geometric shape and define two sets of rules. The rules must include both addition and subtraction of geometric shapes and defer to given design parameters and constraints (such as the size and location of the initial shape). The first part of the exercise is to design a 2D composition, where each new design is generated from the previous one by the repetitious implementation of the rules. In time, color and texture are added as new design parameters to emphasize the main ideas (i.e. rhythm, contrast, harmony). In the second part of the exercise, the main goal is to design a 3D self-standing composition: students work with an initial form and then apply three rules to a set of solid, planar and linear elements. In this final exercise, we begin to discuss space, but not as architectural space per se: the emphasis is on a balanced solid-void relationship, structural stability and different degrees of enclosures.
The second semester (Basic Design Studio II) is built around four pillars of study: Structural systems; Material Behavior; Form and Spatial Exploration; and Environmental Context. The main reason why these topics are chosen is the hope that basic design studio becomes the first step in education to overcome the lack of adequate knowledge in material behavior and inattentiveness to site and context in architectural projects across Turkey. To this end, students work with materials of different nature, type, size, color and texture, and explore their performance as well as “situatedness.” In doing so they investigate emotional and perceptual dimensions of space in relation to specific programs, activities and contexts. The incentive may be local, but composition in the third dimension stands out as the main binding theme. Students employ a variety of methods toward achieving a “well-composed” design product: learning by doing/craft-making, experimental/intuitive, and computational/parametric/rule-based design.

STUDIO COORDINATORS (ARCH): KIVANÇ KILINÇ; (INAR): SEBNEM YÜCEL. INSTRUCTORS: ERAY BOZKURT, BILGE GÖKTogan, METEHAN ÖZCAN, BURCU BIÇER. RESEARCH ASSISTANTS: YASEMİN OKSEL, EDA PAYKOÇ.
RULE-BASED DESIGN (‘WEARABLE STRUCTURE’): The aim of this assignment is to build a wearable structure to cover the upper part of the body (parts of the head, one or two shoulders and upper part of the torso). The wearable structure is composed of repeating units and each unit needs to be generated through the technique of cutting, scoring and folding. When designing this wearable “dress”, students use these units as well as their parametric variations to explore probable folding variations of basic geometric shapes. The final product should demonstrate controlled flexibility, stability and durability. Three dimensional quality of the final composition is an important aspect. Students are expected to use their knowledge of strong and weak types of (geometrical) relationships and design their own connection details; the use glue or any other adhesive material is not allowed.
RULE-BASED DESIGN (‘WEARABLE STRUCTURE’): The aim of this assignment is to build a wearable structure to cover the upper part of the body (parts of the head, one or two shoulders and upper part of the torso). The wearable structure is composed of repeating units and each unit needs to be generated through the technique of cutting, scoring and folding. When designing this wearable “dress”, students use these units as well as their parametric variations to explore probable folding variations of basic geometric shapes. The final product should demonstrate controlled flexibility, stability and durability. Three dimensional quality of the final composition is an important aspect. Students are expected to use their knowledge of strong and weak types of (geometrical) relationships and design their own connection details; the use glue or any other adhesive material is not allowed.
TENSEGRITY COMPOSITION (‘MAGICAL FORCES’): Here the aim is to learn about structural forces by exploring the relationship between physical and visual balance in a 3D composition. By using 3 self-standing units, wool strings, thumbtacks and additional materials which work either in compression or tension, students design a 3D composition within a 40x40x40 cm frame. They are supposed to cover approximately half of the structure, and apply weaving, patching and interlocking techniques to create continuous surfaces. For a larger tensegrity composition to be built properly, none of the wooden elements of the basic unit should touch each other. The forces acting on each point should be equal to zero and distributed evenly along the sticks and strings. This exercise requires students to design their own connection details. They are not allowed to use glue or any other adhesive material.
TENSEGRITY COMPOSITION (‘MAGICAL FORCES’): Here the aim is to learn about structural forces by exploring the relationship between physical and visual balance in a 3D composition. By using 3 self-standing units, wool strings, thumbtacks and additional materials which work either in compression or tension, students design a 3D composition within a 40x40x40 cm frame. They are supposed to cover approximately half of the structure, and apply weaving, patching and interlocking techniques to create continuous surfaces. For a larger tensegrity composition to be built properly, none of the wooden elements of the basic unit should touch each other. The forces acting on each point should be equal to zero and distributed evenly along the sticks and strings. This exercise requires students to design their own connection details. They are not allowed to use glue or any other adhesive material.
MATERIAL BEHAVIOR (‘GOING METAL’): In this exercise students are asked to design a self-standing unit in [1/1] scale by using metal materials. The self-standing unit will function as a light source/lighting device. Like in the tensegrity/structure exercise, the use of adhesive materials is not allowed; students are expected to develop connection details. The aim of the exercise is twofold: the first is to learn about the material behavior: students need to mobilize their knowledge of structural forces to successfully work with different types of metal which would operate either in compression or tension. The second is to introduce function as a new design parameter. The end product asks for the design of multiple layers with different surface and material qualities to ‘capture’ light.
MATERIAL BEHAVIOR (‘GOING METAL’): In this exercise students are asked to design a self-standing unit in [1/1] scale by using metal materials. The self-standing unit will function as a light source/lighting device. Like in the tensegrity/structure exercise, the use of adhesive materials is not allowed; students are expected to develop connection details. The aim of the exercise is twofold: the first is to learn about the material behavior: students need to mobilize their knowledge of structural forces to successfully work with different types of metal which would operate either in compression or tension. The second is to introduce function as a new design parameter. The end product asks for the design of multiple layers with different surface and material qualities to ‘capture’ light.
FINAL EXERCISE: RULE-BASED DESIGN (‘NARRATIVE PATH’): In this final assignment students learn about (environmental) context/site and different qualities and properties of space. They design a “narrative path” that crosses the given site from one end to the other by making a stop at three “stations.” In these stations they are expected to engage in the following activities: 1) observing; 2) reading; and 3) playing. The next step is to design the experience that takes place before, during and after these activities (“transitional spaces”). The entry and exit to “stations” (T1 and T4) are especially important since they mark the beginning and ending of an activity. In addition, T2 and T3 should reflect one of these three experiences: tactile, visual and aural. The site is bounded by a small hill on one side and a creek on the other. Working through section models and drawings (1/50) students should consider different times of the day, seasons and weather conditions; they are expected to form opaque, translucent and transparent surfaces as well as open, semi open and closed areas. Another rule is that they are not allowed to bring furniture in; instead, they can use the earth and the structural system to develop interior spaces.
FINAL EXERCISE: RULE-BASED DESIGN (‘NARRATIVE PATH’): In this final assignment students learn about (environmental) context/site and different qualities and properties of space. They design a “narrative path” that crosses the given site from one end to the other by making a stop at three “stations.” In these stations they are expected to engage in the following activities: 1) observing; 2) reading; and 3) playing. The next step is to design the experience that takes place before, during and after these activities (“transitional spaces”). The entry and exit to “stations” (T1 and T4) are especially important since they mark the beginning and ending of an activity. In addition, T2 and T3 should reflect one of these three experiences: tactile, visual and aural. The site is bounded by a small hill on one side and a creek on the other. Working through section models and drawings (1/50) students should consider different times of the day, seasons and weather conditions; they are expected to form opaque, translucent and transparent surfaces as well as open, semi open and closed areas. Another rule is that they are not allowed to bring furniture in; instead, they can use the earth and the structural system to develop interior spaces.
KIVANÇ KILINÇ, YASAR UNIVERSITY FACULTY OF ARCHITECTURE
ARCH/INAR 120 STUDIO ASSIGNMENTS Fall 2013-SPRING 2016

FINAL EXERCISE: RULE-BASED DESIGN (‘NARRATIVE PATH’): In this final assignment students learn about (environmental) context/site and different qualities and properties of space. They design a “narrative path” that crosses the given site from one end to the other by making a stop at three “stations.” In these stations they are expected to engage in the following activities: 1) observing; 2) reading; and 3) playing. The next step is to design the experience that takes place before, during and after these activities (“transitional spaces”). The entry and exit to “stations” (T1 and T4) are especially important since they mark the beginning and ending of an activity. In addition, T2 and T3 should reflect one of these three experiences: tactile, visual and aural. The site is bounded by a small hill on one side and a creek on the other. Working through section models and drawings (1/50) students should consider different times of the day, seasons and weather conditions; they are expected to form opaque, translucent and transparent surfaces as well as open, semi open and closed areas. Another rule is that they are not allowed to bring furniture in; instead, they can use the earth and the structural system to develop interior spaces.
KIVANÇ KILINÇ, YASAR UNIVERSITY FACULTY OF ARCHITECTURE
ARCH/INAR 120 STUDIO ASSIGNMENTS Fall 2013-SPRING 2016

FINAL EXERCISE: RULE-BASED DESIGN (‘NARRATIVE PATH’): In this final assignment students learn about (environmental) context/site and different qualities and properties of space. They design a “narrative path” that crosses the given site from one end to the other by making a stop at three “stations.” In these stations they are expected to engage in the following activities: 1) observing; 2) reading; and 3) playing. The next step is to design the experience that takes place before, during and after these activities (“transitional spaces”). The entry and exit to “stations” (T1 and T4) are especially important since they mark the beginning and ending of an activity. In addition, T2 and T3 should reflect one of these three experiences: tactile, visual and aural. The site is bounded by a small hill on one side and a creek on the other. Working through section models and drawings (1/50) students should consider different times of the day, seasons and weather conditions; they are expected to form opaque, translucent and transparent surfaces as well as open, semi open and closed areas. Another rule is that they are not allowed to bring furniture in; instead, they can use the earth and the structural system to develop interior spaces.